Department of Basic Science Level: 1 Examiner: Dr. Mohamed Eid Time allowed: 3 hours		Prep. Year: Final Exam Course: Mathematics 2 Course Code: BAS 013 B Date: August 29,2016

The Exam consists of one page Answer all questions No. of questions: 5 Total Mark: 70

Question 1

Find $\mathbf{y}^{`}$ from the following:
(a) $y=2+2^{x}+2^{x^{3}}$
(b) $y=x^{4} \cdot \sinh x^{4}$
(c) $y=\log x \cdot \tanh x$
(d) $y=\tan ^{-1} x+\tanh ^{-1} \mathrm{x}(\mathrm{e}) \mathrm{y}=\mathrm{t} . \ln \mathrm{t}, \mathrm{x}=\mathrm{t} . \mathrm{e}^{\mathrm{t}}(\mathrm{f}) \mathrm{y}^{4}=\mathrm{x}+\ln (\mathrm{x}-\mathrm{y})$

Question 2

Find the following integrals:
(a) $\int\left(x^{3}+\frac{1}{x^{3}}+3^{x}\right) d x$ (b) $\int\left(\frac{x}{1+x^{2}}+\frac{1}{\sqrt{1+x^{2}}}\right) d x$
(c) $\int(2-\sqrt{x})^{2} d x$
(d) $\int\left(\frac{1}{\mathrm{x}+1}+\frac{1}{1+x^{2}}\right) \mathrm{dx}(\mathrm{e}) \int e^{x}\left(3+e^{x}\right)^{7} d x$ (f) $\int x \ln x d x(\mathrm{~g}) \int(3+$ $\cosh x) d x(h) \int \sin ^{4} x d x(i) \int \frac{x+2}{x^{2}-4 x+3} d x$

Question 3

(a)Find the area of the region between the curve $y=x^{3}-8, x$-axis, x in $[1,3]$. (b)If the region between the curve $y=1+x^{3}, \quad \mathrm{x}$-axis, x in $[1,2]$ is rotated about (i) x-axis (ii) y-axis. Find the volume of the generated solids V_{x} and V_{y}. (c)Find the length of the curve $y=\frac{2}{3} x \sqrt{x}, \quad \mathrm{x}$ in $[1,2]$.

Question 4

(a)State the definition of the plane.
(b)Find the angle between the planes : $x-2 y+2 z+5=0,3 x-4 z-1=0$.
(c)Write the equation of the plane that passes through the points:
$(1,3,2),(-1,0,4),(2,0,4)$.

Question 5

(a)Find the angle between the lines:

$$
\begin{equation*}
\mathrm{x}=-3 \mathrm{t}+1, \quad \mathrm{y}=4 \mathrm{t}+1, \quad \mathrm{z}=3 \text { and } x=\frac{y-1}{2}=\frac{z+1}{-2} \tag{2}
\end{equation*}
$$

(b)Write the equation of the planethat passes through the point $(0,-1,3)$ and its normal vector $\overline{\mathrm{N}}=2 \mathrm{i}-3 \mathrm{j}+\mathrm{k}$.
(c)Write the name of each surface:
(i) $x^{2}+y^{2}+z^{2}-2 x-3=0$ (ii) $z^{2}=x^{2}+3 y^{2}$
(iii) $y^{2}+3 z^{2}=4$ (iv) $x^{2}+2 z^{2}=y^{2}$

