Department of Basic Science Level: 1 **Examiner: Dr. Mohamed Eid** Time allowed: 3 hours

Prep. Year: **Final Exam Course:** Mathematics 2 Course Code: BAS 013 B Date: August 29, 2016

The Exam consists of one page **Question 1**

Find **y**` from the following: (a) $y = 2 + 2^{x} + 2^{x^{3}}$ (b) $y = x^{4}$. sinh x^{4} (c) $y = \log x$. tanh x (d) $y = \tan^{-1} x + \tanh^{-1} x(e) y = t \cdot \ln t$, $x = t \cdot e^{t}(f) y^{4} = x + \ln(x - y)$

Question 2

Find the following integrals:

(a) $\int (x^3 + \frac{1}{x^3} + 3^x) dx$ (b) $\int (\frac{x}{1+x^2} + \frac{1}{\sqrt{1+x^2}}) dx$ (c) $\int (2 - \sqrt{x})^2 dx$ (d) $\int (\frac{1}{x+1} + \frac{1}{1+x^2}) dx$ (e) $\int e^x (3 + e^x)^7 dx$ (f) $\int x \ln x dx$ (g) $\int (3 + e^x)^7 dx$ $\cosh x$ $dx(h) \int \sin^4 x dx(i) \int \frac{x+2}{x^2-4x+3} dx$

Question 3

(a) Find the area of the region between the curve $y = x^3 - 8$, x-axis, x in [1, 3]. 4 (b) If the region between the curve $y = 1 + x^3$, x-axis, x in [1, 2] is rotated 8 about (i) x-axis (ii)y-axis. Find the volume of the generated solids V_x and V_y . (c)Find the length of the curve $y = \frac{2}{3} x \sqrt{x}$, x in [1, 2]. 4

Question 4

(a)State the definition of the plane.

(b)Find the angle between the planes :x - 2y + 2z + 5 = 0, 3x - 4z - 1 = 0. (c)Write the equation of the plane that passes through the points: (1, 3, 2), (-1, 0, 4), (2, 0, 4).

Question 5

(a)Find the angle between the lines : x = -3t + 1, y = 4t + 1, z = 3 and $x = \frac{y-1}{2} = \frac{z+1}{-2}$ 2 2 (b)Write the equation of the planethat passes through the point (0, -1, 3) and its

normal vector $\overline{N} = 2i - 3j + k$.

(c)Write the name of each surface:

(i)
$$x^{2} + y^{2} + z^{2} - 2x - 3 = 0$$
(ii) $z^{2} = x^{2} + 3y^{2}$
(iii) $y^{2} + 2z^{2} - 4$ (iv) $y^{2} + 2z^{2} - y^{2}$

$$(iii)y^2 + 3z^2 = 4(iv)x^2 + 2z^2 = y^2$$

18

2

3

5

4

18